Micro RNA based cancer screening by blood test: a review

  • Dr Bindu Salim Professor, Nanotech Research Innovation and Incubation Centre, PSG Institute of Advanced Studies, Coimbatore, Tamilnadu, India
  • Dr A Kandaswamy Dean, Industrial Research and Development, PSG College of Technology, India
  • Dr Athira MV Junior Research Fellow, Nanotech Research Innovation and Incubation Centre, PSG Institute of Advanced Studies, Coimbatore, Tamilnadu, India
  • Dr Madhulika Vijayakumar Oncologist, PSGIMSR, India
  • Dr Adityan R Junior Research Fellow, Nanotech Research Innovation and Incubation Centre, PSG Institute of Advanced Studies, Coimbatore, Tamilnadu, India
Keywords: Cancer, Biomarkers, miRNA, screening

Abstract

Context: Circulating microRNA (miRNA) is of great importance to thebiomarker basednon-invasive cancer diagnosis.

Objective: To identify circulating biomarkers for cancer screening and its usability with a micro fluidic device for developing an easy to use, cost effective screening tool by way of a blood test.

Method: Reviewed published literature for expression of onco-miRNAs and miR-21(microRNA-21) in cancer patients’ serum and their detection methods.

Results: miR-21 was chosen as circulating biomarker for breast cancer screening and testeda microfluidic device for breast cancer with 21 breast cancer and 30 healthy volunteers’ blood samples, results concurred with qPCR, the gold standard for quantification.

Conclusion: In comparison to mammogram, which is the gold standard for breast cancer screening, microfluidic platform-based blood test for screening can reach a large population at affordable cost.

Downloads

Download data is not yet available.

References

1. A. N. Bhatt, R. Mathur, A. Farooque, et.al ‘Cancer biomarkers - current perspectives.’, Indian J. Med. Res., vol. 132, no. August, pp. 129–149, 2010.

2. World Health Organization, ‘WHO Position Paper on Mammography Screening’, 2014.

3. Drukteinis JS, Mooney BP, Flowers CI, et.al Beyond mammography: newfrontiers in breast cancer screening. Am J Med. 2013 Jun;126(6):472-9. doi: 10.1016/j.amjmed.2012.11.025. Epub 2013 Apr 3.

4. B. Salim et.al, ‘PMMA Platform Based Micro Fluidic Mixer for the Detection of MicroRNA- 18a from Retinoblastoma Serum’, J. Anal. Bioanal. Tech., vol. 6, no. 4, pp. 4–10, 2015.

5. C. Ragan, M. Zuker, and M. A. Ragan, ‘Quantitative prediction of miRNA-mRNA interaction based on equilibrium concentrations’, PLoS Comput. Biol., vol. 7, no. 2, 2011.

6. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993 Dec 3;75(5):843-54. [PubMed]

7. Reinhart BJ, Slack FJ, Basson M, et.al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000 Feb 24;403(6772):901-6. [PubMed]

8. Fabian MR, Sonenberg N. The mechanics of miRNA-mediatedgene silencing: a lookunder the hood of miRISC. Nat Struct Mol Biol. 2012 Jun 5;19(6):586-93. doi: 10.1038/nsmb.2296.

9. Melton C, Blelloch R. MicroRNA Regulation of Embryonic Stem Cell Self-Renewal and Differentiation.Adv Exp Med Biol. 2010;695:105-17. doi: 10.1007/978-1-4419-7037-4_8.

10. Y. Saito, G. Liang, G. Egger, et.al, ‘Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells’, Cancer Cell, vol. 9, no. 6, pp. 435–443, 2006.

11. A. a Chaudhuri, A. Yick-Lun So, N. Sinha, et.al, ‘Mir-125b potentiates macrophage activation’, J. Immunol., vol. 187, no. 10, pp. 5062–5068, 2011.

12. M. Sánchez-Beato, A. Sánchez-Aguilera, and M. A. Piris, ‘Cell cycle deregulation in B-cell lymphomas’, Blood, vol. 101, no. 4. pp. 1220–1235, 2003.

13. Takamizawa J, Konishi H, Yanagisawa K,et.al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 2004 Jun 1;64(11):3753-6. [PubMed]

14. Chen JF, Mandel EM, Thomson JM,et.al. The role of microRNA-1 and microRNA-133 in skeletal muscleproliferation and differentiation. Nat Genet. 2006 Feb;38(2):228-33. Epub 2005 Dec 25.

15. Katoh M. Cardio-miRNAs and onco-miRNAs: circulatingmiRNA-baseddiagnostics for non-cancerous and cancerous diseases. Front Cell Dev Biol. 2014 Oct 16;2:61. doi: 10.3389/fcell.2014.00061. eCollection 2014. [PubMed]

16. J. Lu, G. Getz, E. A. Miska, et.al, ‘MicroRNA expression profiles classify human cancers’, Nature, vol. 435, no. 7043, pp. 834–838, 2005.

17. Z. Li, H. Huang, Y. Li, et.al, ‘Up-regulation of a HOXA-PBX3 homeobox-gene signature following down-regulation of miR-181 is associated with adverse prognosis in patients with cytogenetically abnormal AML’, Blood, vol. 119, no. 10. pp. 2314–2324, 2012. [PubMed]

18. S. Schwind, K. Maharry, M. D. Radmacher,et.al, ‘Prognostic significance of expression of a single microRNA, miR-181a, in cytogenetically normal acute myeloid leukemia: A cancer and leukemia group B study’, J. Clin. Oncol., vol. 28, no. 36, pp. 5257–5264, 2010.

19. G. Marcucci, M. D. Radmacher, K. Maharry, et.al, ‘MicroRNA expression in cytogenetically normal acute myeloid leukemia.’, The New England journal of medicine, vol. 358, no. 18. pp. 1919–1928, 2008. [PubMed]

20. Marcucci G, Maharry K, Radmacher MD, et.al. Prognostic significance of, and gene and microRNA expression signatures associated with, CEBPA mutations in cytogeneticallynormalacutemyeloid leukemia with high-risk molecular features: a Cancer and Leukemia Group B Study. J Clin Oncol. 2008 Nov 1;26(31):5078-87. doi: 10.1200/JCO.2008.17.5554. Epub 2008 Sep 22. [PubMed]

21. Y. C. Lu, Joseph T Chang, E. C. Chan, et.al, ‘miR-196, an emerging cancer biomarker for digestive tract cancers’, Journal of Cancer, vol. 7, no. 6. pp. 650–655, 2016.

22. Zhou H, Xiao B, Zhou F, et.al, MiR-421 is a functionalmarker of circulating tumor cells in gastric cancer patients. Biomarkers. 2012 Mar;17(2):104-10. doi: 10.3109/1354750X.2011.614961. Epub 2012 Jan 23. [PubMed]

23. G. A. Calin, C. D. Dumitru, M. Shimizu, et.al, ‘Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia.’, Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 24. pp. 15524–9, 2002.

24. MedinaPP, Nolde M, Slack FJ, OncomiR addictionin an in vivomodel of microRNA-21-inducedpre-B-cell lymphoma. Nature. 2010 Sep 2;467(7311):86-90. doi: 10.1038/nature09284. Epub 2010 Aug 8. [PubMed]

25. Ota A, Tagawa H, Karnan S, et.al, Identification and characterization of a novelgene, C13orf25, as a target for 13q31-q32amplification in malignant lymphoma. Cancer Res. 2004 May 1;64(9):3087-95.

26. S. Volinia, G. A. Calin, C.-G. Liu, et.al, ‘A microRNA expression signature of human solid tumors defines cancer gene targets’, Proc. Natl. Acad. Sci. U. S. A., vol. 103, no. 7, pp. 2257–2261, 2006. [PubMed]

27. Costinean S, Zanesi N, PekarskyY, et.al, Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphomain E(mu)-miR155transgenic mice. Proc Natl Acad Sci U S A. 2006 May 2;103(18):7024-9. Epub 2006 Apr 25. [PubMed]

28. M. Garofalo, G. Di Leva, G. Romano, et.al, ‘miR-221&222 Regulate TRAIL Resistance and Enhance Tumorigenicity through PTEN and TIMP3 Downregulation’, Cancer Cell, vol. 16, no. 6, pp. 498–509, 2009.

29. Croce CM. Causes and consequences of microRNAdysregulation in cancer. Nat Rev Genet. 2009 Oct;10(10):704-14. doi: 10.1038/nrg2634. [PubMed]

30. Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptoticfactor in humanglioblastoma cells. Cancer Res. 2005 Jul 15;65(14):6029-33.

31. Liu MF, J. S, and L. Z, Physiological and pathological functions of mammalian microRNAs- Comprehensive Toxicology, 2nd ed. London: Elsevier Science, 2010.

32. G. Q. Song, L. Gu, B. S. He, et.al, 'Expression of MiRNA-21 in Diffuse Large B Cell Lymphoma and Its Significance’, . Journal of Experimental Hematology, vol. 22, no. 6. pp. 1603–1609, 2014.

33. Huang GL, Zhang XH, Guo GL, et.al, Clinical significance of miR-21expression in breast cancer: SYBR-GreenI-basedreal-timeRT-PCRstudy of invasiveductal carcinoma. Oncol Rep. 2009 Mar;21(3):673-9.

34. M. V. Iorio, M. Ferracin, C. G. Liu, et.al, ‘MicroRNA gene expression deregulation in human breast cancer’, Cancer Research, vol. 65, no. 16. pp. 7065–7070, 2005.

35. Sempere LF, Christensen M, Silahtaroglu A, et.al. Altered MicroRNAexpressionconfined to specificepithelial cellsubpopulations in breastcancer. Cancer Res. 2007 Dec 15;67(24):11612-20.

36. Song B, Wang C, Liu J,et.al, MicroRNA-21 regulatesbreast cancerinvasionpartly by targetingtissue inhibitor of metalloproteinase 3 expression. J Exp Clin Cancer Res. 2010 Mar 27;29:29. doi: 10.1186/1756-9966-29-29. [PubMed]

37. J. Gao, Q. Zhang, J. Xu, et.al, , ‘Clinical significance of serum miR-21 in breast cancer compared with CA153 and CEA.’, Chin. J. Cancer Res., vol. 25, no. 6, pp. 743–8, 2013.

38. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012 Jan-Feb;62(1):10-29. doi: 10.3322/caac.20138. Epub 2012 Jan 4. [PubMed]

39. Richart RM. A modifiedterminology for cervicalintraepithelial neoplasia. Obstet Gynecol. 1990 Jan;75(1):131-3. [PubMed]

40. W. Jia, Y. Wu, Q. Zhang, et.al, ‘Expression profile of circulating microRNAs as a promising fingerprint for cervical cancer diagnosis and monitoring.’, Mol. Clin. Oncol., vol. 3, no. 4, pp. 851–858, 2015.

41. Lu Z, Liu M, Stribinskis V, et.al, 'MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene'. Oncogene. 2008 Jul 17;27(31):4373-9. doi: 10.1038/onc.2008.72. Epub 2008 Mar 31. [PubMed]

42. T. Yao and Z. Lin, ‘MiR-21 is involved in cervical squamous cell tumorigenesis and regulates CCL20’, Biochim. Biophys. Acta - Mol. Basis Dis., vol. 1822, no. 2, pp. 248–260, 2012.

43. Torrisani J, Bournet B, du Rieu MC, et.al, Micro RNA transfer in pancreaticcancer-derivedcellsinhibitsin vitrocell proliferation but fails to altertumor progression. Hum Gene Ther. 2009 Aug;20(8):831-44. doi: 10.1089/hum.2008.134. [PubMed]

44. Bloomston M, Frankel WL, Petrocca F, et.al, MicroRNA expressionpatterns to differentiatepancreaticadenocarcinoma from normalpancreas and chronic pancreatitis. JAMA. 2007 May 2;297(17):1901-8. [PubMed]

45. Lee EJ, GusevY, Jiang J, et.al, Expression profilingidentifiesmicroRNAsignature in pancreaticcancer. Int J Cancer. 2007 Mar 1;120(5):1046-54.

46. Várallyay E, Burgyán J, Havelda Z. MicroRNA detection by northern blotting using locked nucleic acid probes. Nat Protoc. 2008;3(2):190-6. doi: 10.1038/nprot.2007.528. [PubMed]

47. Brown T, Mackey K. Analysis of RNA by northern blot hybridization. Curr Protoc Hum Genet. 2001 Nov;Appendix 3:Appendix 3K. doi: 10.1002/0471142905.hga03ks30.

48. Niesters HG. Molecular and diagnosticclinicalvirology in real time. Clin Microbiol Infect. 2004 Jan;10(1):5-11.

49. Griffiths-Jones S. The microRNA Registry. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D109-11. [PubMed]

50. C.-G. Liu, G. A. Calin, B. Meloon, et.al, ‘An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues’, Proc. Natl. Acad. Sci. U.S.A., vol. 101, no. 26. p. 9740, 2004.

51. O. Barad, E. Meiri, A. Avniel, et.al, ‘MicroRNA expression detected by oligonucleotide microarrays : System establishment and expression profiling in human tissues’, Methods, vol. 14, pp. 2486–2494, 2004. [PubMed]

52. L.-Q. Gu, M. Wanunu, M. X. Wang, et.al, ‘Detection of miRNAs with a nanopore single-molecule counter’, Expert Rev. Mol. Diagn., vol. 12, no. 6, pp. 573–584, 2012.

53. M. Marazuela and M. Moreno-Bondi, ‘Fiber-optic biosensors--an overview.’, Analytical and bioanalytical chemistry, vol. 372, no. 5–6. pp. 664–82, 2002.
micro RNA based cancer screening by blood test: a review
CITATION
DOI: 10.17511/ijphr.2018.i1.03
Published: 2018-03-31
How to Cite
Salim, B., Kandaswamy, A., MV, A., Vijayakumar, M., & R, A. (2018). Micro RNA based cancer screening by blood test: a review. Public Health Review: International Journal of Public Health Research, 5(1), 16-25. https://doi.org/10.17511/ijphr.2018.i1.03
Section
Review Article